Self-evolving Artificial Immune System via Developing T and B Cell for Permutation Flow-shop Scheduling Problems
نویسنده
چکیده
Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm. Keywords—Artificial Immune System, Clonal Selection, Flow-shop Scheduling Problems, Co-evolutional strategy
منابع مشابه
Genetic algorithms Holland [31] and Goldberg [32], powerful tools based on biological mechanisms and natural selection theory, have received considerable attention regarding its potential as an optimization technique for complex problems
Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities...
متن کاملHybrid artificial immune system and simulated annealing algorithms for solving hybrid JIT flow shop with parallel batches and machine eligibility
This research deals with a hybrid flow shop scheduling problem with parallel batching, machine eligibility, unrelated parallel machine, and different release dates to minimize the sum of the total weighted earliness and tardiness (ET) penalties. In parallel batching situation, it is supposed that number of machine in some stages are able to perform a certain number of jobs simultaneously. First...
متن کاملA cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling
Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...
متن کاملA Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs
This paper investigates the problem of just-in-time permutation flow shop scheduling with limited buffers and linear job deterioration in an uncertain environment. The fuzzy set theory is applied to describe this situation. A novel mixed-integer nonlinear program is presented to minimize the weighted sum of fuzzy earliness and tardiness penalties. Due to the computational complexities, the prop...
متن کاملMILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints
In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012